Mysql目前几种数据库引擎:
    MySQL数 据库引擎取决于MySQL在安装的时候是如何被编译的。要添加一个新的引擎,就必须重新编译MYSQL。在缺省情况下,MYSQL支持三个引擎:ISAM、MYISAM和HEAP。另外两种类型INNODB和BERKLEY(BDB),也常常可以使用。如果技术高超,还可以使用MySQL++ API自己做一个引擎。下面介绍几种数据库引擎:

  • ISAM:ISAM是一个定义明确且历经时间考验的数据表格管理方法,它在设计之时就考虑到 数据库被查询的次数要远大于更新的次数。因此,ISAM执行读取操作的速度很快,而且不占用大量的内存和存储资源。ISAM的两个主要不足之处在于,它不 支持事务处理,也不能够容错:如果你的硬盘崩溃了,那么数据文件就无法恢复了。如果你正在把ISAM用在关键任务应用程序里,那就必须经常备份你所有的实 时数据,通过其复制特性,MYSQL能够支持这样的备份应用程序。

  • MyISAM:MyISAM是MySQL的ISAM扩展格式和缺省的数据库引擎。除了提供ISAM里所没有的索引和字段管理的大量功能,MyISAM还使用一种表格锁定的机制,来优化多个并发的读写操作,其代价是你需要经常运行OPTIMIZE TABLE命令,来恢复被更新机制所浪费的空间。MyISAM还有一些有用的扩展,例如用来修复数据库文件的MyISAMCHK工具和用来恢复浪费空间的 MyISAMPACK工具。MYISAM强调了快速读取操作,这可能就是为什么MySQL受到了WEB开发如此青睐的主要原因:在WEB开发中你所进行的大量数据操作都是读取操作。所以,大多数虚拟主机提供商和INTERNET平台提供商只允许使用MYISAM格式。MyISAM格式的一个重要缺陷就是不能在表损坏后恢复数据。

  • HEAP:HEAP允许只驻留在内存里的临时表格。驻留在内存里让HEAP要比ISAM和MYISAM都快,但是它所管理的数据是不稳定的,而且如果在关机之前没有进行保存,那么所有的数据都会丢失。在数据行被删除的时候,HEAP也不会浪费大量的空间。HEAP表格在你需要使用SELECT表达式来选择和操控数据的时候非常有用。要记住,在用完表格之后就删除表格。

  • InnoDB:InnoDB数据库引擎都是造就MySQL灵活性的技术的直接产品,这项技术就是MYSQL++ API。在使用MYSQL的时候,你所面对的每一个挑战几乎都源于ISAM和MyISAM数据库引擎不支持事务处理(transaction process)也不支持外来键。尽管要比ISAM和 MyISAM引擎慢很多,但是InnoDB包括了对事务处理和外来键的支持,这两点都是前两个引擎所没有的。如前所述,如果你的设计需要这些特性中的一者 或者两者,那你就要被迫使用后两个引擎中的一个了。

一般来说

MyISAM适合:

    (1)做很多count 的计算;

    (2)插入不频繁,查询非常频繁;

    (3)没有事务。

InnoDB适合:

    (1)可靠性要求比较高,或者要求事务;

    (2)表更新和查询都相当的频繁,并且表锁定的机会比较大的情况。

MySQL会默认提供多种存储引擎,可以通过下面的查看:

    (1)看你的MySQL现在已提供什么存储引擎: mysql> show engines;

    (2)看你的MySQL当前默认的存储引擎: mysql> show variables like '%storage_engine%';

    (3)你要看某个表用了什么引擎(在显示结果里参数engine后面的就表示该表当前用的存储引擎): mysql> show create table 表名;


Mysql目前几种索引类型:

  • normal:表示普通索引。

  • unique:表示唯一的,不允许重复的索引,如果该字段信息保证不会重复例如身份证号用作索引时,可设置为unique。

  • full-text:表示 全文搜索的索引。 FULLTEXT 用于搜索很长一篇文章的时候,效果最好。用在比较短的文本,如果就一两行字的,普通的INDEX(索引)也可以。full-text在mysql里仅有myisam支持它,而且支持full-text的字段只有char、varchar、text数据类型。主要是用来代替like "%***%"效率低下的问题

    创建语句:
     ALTER TABLE table ADD INDEX `FULLINDEX` USING FULLTEXT(`cname1`[,cname2…]);

Mysql目前几种索引方法:

  • HASH

    1. Hash 索引仅仅能满足"=","IN"和"<=>"查询,不能使用范围查询。
      由于 Hash 索引比较的是进行 Hash 运算之后的 Hash 值的大小比较,这个大小比较不等于索引键的值的比较,所以它只能用于等值的过滤,不能用于基于范围的过滤。

    2. Hash 索引无法被用来避免数据的排序操作。
      由于 Hash 索引中存放的是经过 Hash 计算之后的 Hash 值,而且Hash值的大小关系并不一定和索引键的值完全一样,所以数据库无法利用索引的数据来避免任何排序运算。

    3. Hash 索引不能利用部分索引键查询。
      对于组合索引,Hash 索引在计算 Hash 值的时候是组合索引键合并后再一起计算 Hash 值,而不是单独计算 Hash 值,所以通过组合索引的前面一个或几个索引键进行查询的时候,Hash 索引也无法被利用。

    4. Hash 索引在任何时候都不能避免表扫描。
      前面已经知道,Hash 索引是将索引列通过 Hash 运算之后,将 Hash运算结果的 Hash 值和所对应的行指针信息存放于一个 Hash 表中,由于不同索引键存在相同 Hash 值,所以即使取满足某个 Hash 键值的数据的记录条数,也无法从 Hash 索引中直接完成查询,还是要通过访问表中的实际数据进行相应的比较,并得到相应的结果。所以Hash 索引遇到大量Hash值相等的情况后性能并不一定就会比B-Tree索引高,会浪费多次表数据的访问,而造成整体性能低下。

  • BTREE
    B-Tree 索引是 MySQL 数据库中使用最为频繁的索引类型,除了 Archive 存储引擎之外的其他所有的存储引擎都支持 B-Tree 索引。可以被用在像=,>,>=,<,<=和BETWEEN这些比较操作符上。而且还可以用于LIKE操作符,只要它的查询条件是一个不以通配符开头的常量。
        一般来说, MySQL 中的 B-Tree 索引的物理文件大多都是以 Balance Tree(平衡二叉树) 的结构来存储的,也就是所有实际需要的数据都存放于 Tree 的 Leaf Node(叶节点) ,而且到任何一个 Leaf Node(叶节点)的最短路径的长度都是完全相同的,所以我们大家都称之为 B-Tree 索引当然,可能各种数据库(或 MySQL 的各种存储引擎)在存放自己的 B-Tree 索引的时候会对存储结构稍作改造。如 Innodb 存储引擎的 B-Tree 索引实际使用的存储结构实际上是 B+Tree ,也就是在 B-Tree 数据结构的基础上做了很小的改造,在每一个Leaf Node (叶节点)上面出了存放索引键的相关信息之外,还存储了指向与该 Leaf Node 相邻的后一个 LeafNode 的指针信息,这主要是为了加快检索多个相邻 Leaf Node 的效率考虑。
    在 Innodb 存储引擎中,存在两种不同形式的索引,一种是 Cluster 形式的主键索引( Primary Key ),另外一种则是和其他存储引擎(如 MyISAM 存储引擎)存放形式基本相同的普通 B-Tree 索引,这种索引在 Innodb 存储引擎中被称为 Secondary Index(非主键索引) 。

  • RTREE
    r-tree在mysql很少使用,仅支持geometry数据类型,支持该类型的存储引擎只有myisam、bdb、innodb、ndb、archive几种。
    相对于b-tree,r-tree的优势在于范围查找.


事务的隔离级别:

SQL标准定义了4类隔离级别,包括了一些具体规则,用来限定事务内外的哪些改变是可见的,哪些是不可见的。低级别的隔离级一般支持更高的并发处理,并拥有更低的系统开销。

  • Read Uncommitted(读取未提交内容)

    在该隔离级别,所有事务都可以看到其他未提交事务的执行结果。本隔离级别很少用于实际应用,因为它的性能也不比其他级别好多少。读取未提交的数据,也被称之为脏读(Dirty Read)。

  • Read Committed(读取提交内容)

    这是大多数数据库系统的默认隔离级别(但不是MySQL默认的)。它满足了隔离的简单定义:一个事务只能看见已经提交事务所做的改变。这种隔离级别 也支持所谓的不可重复读(Nonrepeatable Read),因为同一事务的其他实例在该实例处理其间可能会有新的commit,所以同一select可能返回不同结果。

  • Repeatable Read(可重读)

    这是MySQL的默认事务隔离级别,它确保同一事务的多个实例在并发读取数据时,会看到同样的数据行。不过理论上,这会导致另一个棘手的问题:幻读 (Phantom Read)。简单的说,幻读指当用户读取某一范围的数据行时,另一个事务又在该范围内插入了新行,当用户再读取该范围的数据行时,会发现有新的“幻影” 行。InnoDB和Falcon存储引擎通过多版本并发控制(MVCC,Multiversion Concurrency Control)机制解决了该问题。

  • Serializable(可串行化) 

    这是最高的隔离级别,它通过强制事务排序,使之不可能相互冲突,从而解决幻读问题。简言之,它是在每个读的数据行上加上共享锁。在这个级别,可能导致大量的超时现象和锁竞争。

这四种隔离级别采取不同的锁类型来实现,若读取的是同一个数据的话,就容易发生问题。





注意:本文归作者所有,未经作者允许,不得转载